Summary: Challenges and Opportunities for Building- ...

13 May.,2024

 

Summary: Challenges and Opportunities for Building- ...

State of the Industry and Key Domestic Markets

Market segments actively being pursued

Based on responses received, a variety of product segments were identified as being pursued in the United States. The list includes:

Want more information on bipv advantages and disadvantages? Feel free to contact us.

  • Roofing products:
    • Roofing systems with commodity solar modules
    • Monocrystalline roofing panels on slopped roofs
    • Standing seam metal roofs
    • Solar shingles
    • Solar tiles
    • Integrated roofing membrane on rooftop with solar
  • Covering/Shading products:
    • Parking lot coverings
    • Solar carports with charging stations
    • Awnings
    • Sunshades
    • Solar laminates (without framework) on solar canopies, carports, awnings
  • Glass products:
    • Power generating PV windows
    • Opaque solar modules and semitransparent solar modules
    • Building glazing
    • Spandrel
    • Curtain walls
  • Vertical products:
    • Cladding
    • Building façades
    • Vestibules
    • Wall-integrated PV
  • Other areas:
    • High-performance building envelopes
    • Fiberglass pultruded parts for window reinforcement
    • CIGS panels for building façades, partial window replacements, indirect light awnings
    • Power electronic solutions for rooftop and façades
    • Electrical panels, subpanels, breakers
    • Building microgrids (solar+ESS+EV charging+EMS+VPP operation)
    • Characterization and validation of products

In terms of markets served, most of the respondents indicated a focus on residential or commercial buildings. This was an almost equal split, with slightly more responses giving preference to commercial buildings and the majority pursuing both markets. It was noted by some respondents that their strategy is to initially target commercial buildings and then move to the residential market, as they see more difficulties for the residential segment due to less willingness of owners to pay and lack-of-standardization concerns for BIPV products. Some special segments of the commercial building market, like government buildings, educational facilities, hospitals, manufactured houses, and agricultural facilities were also identified by the respondents as being of interest and of their primary focus. The following segments were specifically mentioned:

  • Residential buildings (single and multi-family)
  • Commercial buildings
  • C&I buildings
  • MUSH market: municipalities, universities, schools, hospitals
  • Government buildings, higher education, healthcare sector
  • Manufactured houses at the factory level
  • Agriculture and greenhouses
  • Playscapes

In terms of new buildings or retrofits, the vast majority of respondents mentioned being involved in both sectors with few of them only focusing on new buildings.

Market segments best aligned with commercialized BIPV products

A variety of information was provided with respect to the alignment of commercialized BIPV products and market segments. Some responses viewed the topic from the customer market segment perspective and others from the side of the BIPV product and application. It was also noted that, assuming availability of various BIPV products, the type of BIPV should be dictated by the aspect ratio of the building. Larger roof areas (like in warehouses) would naturally be a better fit for rooftop solar, while taller, skinnier buildings (like high-rise office or residential buildings) would be better fit for glazing or façade products.

Overall, most of the respondents considered the extended commercial building market to be best aligned with commercialized BIPV products. This market includes high-end commercial office and retail buildings (which have fewer cost constraints and can use the technology as marketing point), educational facilities, such as schools, colleges, and universities (which consider educational and research benefits of incorporating new technologies, especially in the science and technology sectors), hospitals, hospitality buildings, and warehouse facilities (which consider weight issues and reduced need for puncture of membrane roofs). New construction commercial projects seem to have the most potential.

The residential building market seems to be interested in the appeal of aesthetics of BIPV compared to tradition rooftop PV products. Development of more aesthetically pleasing products would be the best strategy for alignment with this market, though cost is also a significant factor. Multi-family homes and high-rise buildings seem to be the most promising segments. New constructions seem to be perceived as better aligned compared to retrofits.

In terms of products, roofing products are perceived to be best aligned with the market, both for commercial and residential applications. Power generating windows and other glass products are secondary, with more appeal on in commercial applications. However, responses indicate that most of the existing products need further development as they might not be fully aligned with the market needs. Another product category identified is shading elements, awnings, and in particular carports and parking shade covers.

Respondents also provided some insights about differences between the U.S. markets and markets in Europe or elsewhere in the world. It was noted that in the United States, residential and commercial roofs for new constructions align well with existing BIPV products in the space, but elsewhere in the world, many more commercial products are available for building façades for high-rise buildings, offices, government buildings, educational facilities, sports arenas, airports, and public areas. In Europe, there have been large commercial projects integrating BIPV glass as well as several small-scale commercial projects integrating BIPV walls and façades.

Largest market opportunities for BIPV

A variety of information was provided on the market opportunities for BIPV products. Like in the previous question, some responses viewed the topic from the customer market segment perspective and others from the side of the BIPV product and application.

Respondents perceived the largest market opportunities for BIPV to be in the commercial sector; however, residential applications were also considered to present great opportunities. In the commercial segment, corporate offices, retail buildings, storefronts, public buildings, government buildings, educational facilities, hospitals, and light industrial facilities were specifically identified as promising. Opportunities for older buildings with large power needs at places where the grid infrastructure is older were mentioned as well as applications that combine conventional rooftop solar with additional BIPV elements. For the residential sector, multi-family housing and low- and mid-rise buildings with a high ratio of wall-window to roof area were considered the largest opportunities. Incorporation of BIPV into manufactured housing and modular construction production lines was also identified as a promising opportunity. In terms of location, it was mentioned that the state of California would provide a large market opportunity because of the state requirements with respect to climate change and clean energy.

When viewing opportunities from the BIPV product perspective, three product categories were identified as being the most promising in the market:

  • Roofing products
  • Glass products (windows, glazing)
  • Shade elements (awnings, carports, sunshades)

Regarding PV glass and power generating windows, respondents explicitly mentioned the stacking benefits of glass capturing infra-red light and thus also reducing heat transferred into the building.

Respondents also noted that a comprehensive market characterization and assessment is necessary, as the market opportunity will be eventually defined by the adoption and market-pull for these products, not by the theoretical availability of BIPV products that could replace a particular building element. Another view presented was the perspective of using the energy generated to offset the cost of the building element that is required by the building.

Marketing and sourcing of current BIPV products

Respondents approached this topic from various different angles and provided different types of information related to marketing strategies, manufacturing locations, industry composition, and PV cell technologies mostly used by BIPV products. Some respondents noted that marketing efforts are very limited and are done on a project-per-project basis, and this is considered a contributing factor to the limited uptake of BIPV technologies.

  • Marketing and sourcing strategies: A typical marketing approach treats BIPV as architectural products that are marketed and sourced as offerings within the construction materials industry. Therefore, marketing starts from approaching architects, engineers, or real-estate developers via a product advertising strategy. Typical media and avenues include:
    • major architectural magazines, websites, or other digital media;
    • social media venues;
    • trade shows, home and garden shows, green building shows, architectural conferences, sustainability expos;
    • networking into specific target market segments.

In cases where developers or designers are more familiar with BIPV products, sourcing would follow the pattern of an interested architect or building developer reaching out to a BIPV product vendor. BIPV products are often marketed as elements of total-building approaches to achieve high LEED or similar scores. They are offered by the supplier to real-estate developers and architects with a promise of return on investment based on the electrical cost offset from the generated electricity as well as on applicable local incentives. Non-electrical benefits, such as acoustics, thermal, safety glazing, or UV light blocking, are also listed but often not included as part of the economic consideration. The dual-use and aesthetic aspects of BIPV compared to traditional PV products is another marketing point typically used.

  • Manufacturing locations: Locations mentioned in responses include the United States (mainly for assembly), Canada, and China. Companies seem to have interest in having manufacturing in the U.S. as they believe it could allow them to better serve their customers.
  • Industry composition: Respondents perceive the BIPV industry in the U.S. to be highly concentrated with only 5-6 major players, most of them providing roofing products. There is also a number of smaller companies or start-ups, some of which are also focusing on other products (windows, glass, façades, curtainwalls, shading elements, carports, etc.). It was mentioned that the number of startup companies in the U.S. is very small in comparison to Europe, where there are over 30 small companies producing and marketing various BIPV products. There are also cases of big roofing, construction, and window companies that begin to acquire and partner with BIPV companies and then integrating them with their existing offerings and channels.
  • PV cell technologies: Cell technologies considered for BIPV products are based on silicon or other thin-film technologies, such as amorphous silicon, (a-Si), multicrystalline silicon (mc-Si), polycrystalline silicon (pc-Si), copper indium gallium diselenide (CIGS), cadmium telluride (CdTe), or organic PV (OPV) cells. Monocrystalline silicon (c-Si) is also used in roofing products, like in solar shingles.
Domestic manufacturing opportunities

There is a growing interest in U.S. manufacturing, as evidenced by the number of foreign-owned companies that have opened or are opening plants in the U.S., in addition to U.S.-owned companies that already have manufacturing facilities. The U.S. has established itself as a leader in the manufacturing of rooftop-integrated solar, but other companies could be incentivized to develop manufacturing capabilities that include PV integrated into windows, building façades, and other substrates. In addition, a growing number of innovative BIPV ideas have emerged across smaller companies and startups in the United States. Respondents, however, have noted that currently there are insufficient economic incentives for the development of domestic manufacturing of BIPV products and their respective supply chains in the United States. Tax incentives or grants to support BIPV manufacturers who wish to manufacture in the U.S. and for businesses to procure these products could be a driver for adoption.

In general, it is ideal to manufacture components as close to the market as possible as this reduces costs and speeds up development. The impact to the cost of the final product could be lowered, if the bulk of the raw materials and final assembly are completed domestically or regionally (especially if tariffs are considered). It is customary for the building industry to use local manufacturing and source materials locally, so it would be meaningful for BIPV to follow the same paradigm. Many building materials used in such products are large and heavy enough that makes sense to produce domestically and even regionally throughout the country to reduce transportation costs and logistics, which could account for 10-15% of the cost, in some cases.  Other benefits include manufacturing to order, reduced inventories, on time delivery, quick deployment within the region, quality control, and the ability to better meet various sustainability requirements, while also ensuring supply chain security. It was also identified that cybersecurity of BIPV systems, as it pertains to their electronics and control hardware and software, provides another argument for domestic production.

The roofing industry lends itself to domestic manufacturing, with shipping costs being a major reason. The main challenge to the development of BIPV roofing is sourcing of materials and manufacturing of the non-industry standard-size solar roof tile. There currently exists very limited domestic capability for this need. The specific glass used in PV modules is made only in Asia today and is difficult and costly to source. Manufacturing equipment and facilities do not currently exist for specific solar tile sizes, and this not only increases cost but also lengthens development time. This creates needs and opportunities for developing domestic manufacturing capabilities.

Glass is also produced close to the consumption site due to high transportation costs because of the brittleness and weight of the product. Most windows are manufactured domestically, and insulated glass units (IGUs) follow this same pattern. IGUs are primarily ordered and manufactured regionally/domestically, due to custom specifications, sizes, and lead times. By extension, it is reasonable to conclude that solar windows and other glazing-based PV products are well-suited for domestic manufacturing. Solar windows are unlikely to be exported globally from a single manufacturing site as this could be cost prohibitive. If the integrated photovoltaic function does not involve fabricating semi-transparent solar cells over the entire window area, but rather only employ commercial solar cells (e.g. crystalline Si based) outside the window viewing area and thin-film coating techniques, then it is very feasible to integrate the photovoltaic window manufacturing/assembly alongside the existing window manufacturing facilities. It could also seamlessly integrate into the existing IGU supply chain (glass fabricators can apply PV coatings), which further ensures domestic manufacturing and that the revenue uplift from the value-added BIPV window product is captured domestically as well. Semitransparent OPV power generating windows also have a significant opportunity for domestic manufacturing.

Respondents also identified a few additional, more specialized opportunities for domestic manufacturing, such as cadmium telluride (CdTe) as the semiconductor for PV modules, pre-engineering and assembly of unitized curtainwall panels, manufactured homes incorporating BIPV, and emerging products that rely on advanced manufacturing like quantum dots.

Advantages to regionalization of product manufacturing with end markets

Respondents described a variety of advantages that regional BIPV product manufacturing would provide. Such benefits pertain to:

  • Development of a stable domestic supply chain less susceptible to political interruption or other disruptions.
  • Reduction of transportation costs.
  • Reduction of carbon footprint.
  • Improvement in the pace of product development.
  • Decrease in product lead times.
  • Reduction in inventories.
  • Enhancement in customer perception.
  • Local sales support and logistics.
  • Creation of more local jobs.
  • Creation of regional educational opportunities.
  • Fostering of innovation.
  • Enhancement in community engagement and relations.
  • Fulfilling regional architectural preferences that are best addressed with local production.
  • Capturing market share by calibrating products and applications to meet specific regional customer environmental characteristics.
  • Customization of locally manufactured products to regionally specific building code requirements.

It was also noted that this topic should be more thoroughly addressed within an economic framework that will consider factors like the costs of building and operating regional manufacturing facilities, the cost and availability of raw materials at a distributed scale, projected long-term product demand per region, the ability of a smaller manufacturing facility to adapt to new products and production equipment, and how the latter stacks up against projected savings in transportation and breakage costs.

Building Integrated Photovoltaic: A Futuristic Approach to ...

What is Building Integrated Photovoltaic or BIPV System?

(BIPV) Building-Integrated Photovoltaic is a system with the concept of converting solar energy into electrical energy using special types of solar cells for domestic utilization. BIPV is an upgraded form of conventional solar panels and systems, which enables electricity generation from the solar energy, on-site itself.

The idea behind the invention of the BIPV system, an eco-friendly technology was to integrate the solar panels in the building envelope and to produce the required amount of electricity from the solar energy.

What makes BIPV different from the conventional solar systems is that conventional solar panels can only be installed on roofs and terraces of buildings/houses, while Building integrated solar panels can be installed on the building envelope such as the roofs, skylights and facades.

Here’s the practical example that how the integrated photovoltaic system works in roof of the house.

If you are looking for more details, kindly visit solar roof tiles.

Definitely, implanting building integrated photovoltaic solar panels is eye-catching. But have you wondered how you can install the same at the roof of your home? We are here to provide the complete prior guide that you need to learn while planning to install Solar PV System in the rooftop.

The above figure clearly indicates the photovoltaic glazing as facades in the high rise building to enhance the exterior look.

Beside construction photovoltaic facades, the trend has also turned the tables to make efficient use of ceramic glass and create attractive false front of the building. Have a look into the below link and get amazing ideas to make ceramic glass facades.

The sunlight is essential part in the ventilation of the house. The PV Glazing is also used as skylights to in the buildings and in the residential home as well to contribute the required ventilation.

Building Integrated Photovoltaic became commercially popular for the first time during the 1990s and soon replaced the conventional photovoltaic systems or solar systems.  The photovoltaic systems (PV systems) were considered as not much effective during late 80s and early 90s. A lot of improvisation happened in this technology later to make it effective and most of these technological advancement resulted in not just making the system effective, but also brought in the much-needed cost effectiveness too.

As time went by, Integrated PV System gained popularity due to its effectiveness, its efficiency to convert more solar energy into electrical energy and relatively low cost. Since BIPV also came across as a versatile product, it soon became a much sought after building material that could replace the conventional exterior cladding materials like glass. BIPV also provides excellent aesthetics, similar to the architectural glass while also doubling up as an energy generation unit.

How does Building Integrated Photovoltaic System Works?

The working of BIPV is similar to the conventional solar panels as both of them have a similar concept of producing electrical energy from solar energy. The sunrays falling on the BIPV panels are absorbed by them. The BIPV solar panels have different efficiency depending on the types of panels. The sun rays absorbed by the panels are sent to the inverter. An inverter is a device that converts the direct current (DC) to an alternating current (AC). As soon as the direct current is converted into an alternating current, it is sent to the grid. Now from the grid, the electric current or the electrical energy is available for use. The whole building gets the power from there. All the components of BIPV are connected using wires and cables of the required specifications.

Advantages and disadvantages of Building Integrated Photovoltaic

Advantages:

The advantages of building integrated photovoltaic are as follows:

01. BIPV enables the building to generate its own electricity. So the building and its occupants would not rely on electricity providers for electricity.

02. BIPV panels provide excellent and pleasing aesthetics to the exterior of the building.

03. It has a wide range of applications. BIPV can be installed in facades, roofs, skylights and windows of the building.

04. The electricity generated by the BIPV does not harm the environment. So it is also an eco-friendly alternative for generating electricity.

05. BIPV, replacing the conventional building materials, helps to save the material costs.

06. If it is fully utilized according to its designed life period, it is a cheaper alternative to the conventional solar panels and conventional building materials too.

07. It protects the occupants of the building from various weather conditions like rain, snow, cold, heat, extreme winds and thunderstorms.

08. BIPV acts as thermal insulation to the building. The BIPV panels prohibit unwanted heat from entering the building.

Disadvantages:

The disadvantages of building integrated photovoltaic are as follows:

01. The initial cost of BIPV is higher when compared to the conventional solar panels. This has made it less popular in some parts of the world.

02. BIPV is not suitable for the buildings which are already constructed.

03. The installation of BIPV is a bit complex, due to which higher labor costs are incurred.

Conclusion

Overall, it is easily understood from the above study that Building Integrated Photovoltaic is technique, has its root since many years back yet the constant improvement in the system leads to great advantages in terms of cost, huge electricity production at affordable rate and stands high for its durability. Without a thought, it is feasible to adopt integrated photovoltaic technology and raise the living standards.

Not only BIPV Solar technology but if you are an Indian and installing solar panels in your roof tops concerns you a lot, then have a look into the below link.

Now, after going through all these details in brief, if the question arises in your mind about the reliability of solar panels and its benefits, follow the link and get answers to your doubts.

Choosing the best solar panels and precisely installing it is obviously responsible task but work doesn’t end here. Apart from these, regular maintenance is as important as other things to keep in mind. Study the below article and learn the appropriate ways to preserve solar panels.

Image Courtesy: Image 2, Image 3, Image 4

Author Bio

Harsh Ved – I am a civil engineer, working as a site engineer and a freelance content writer. I hold a Master’s degree in Construction Engineering and Management. My keen interest lies in writing and research work. I have also written a research paper on “Building Integrated Photovoltaics” that is published in IRJET Journal.

Contact us to discuss your requirements of China solar tile company. Our experienced sales team can help you identify the options that best suit your needs.